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1 Introduction 

Discrete time series can represent the occurrences of either a deterministic or a random 
process. Dynamical system theory provides powerful techniques to assess whether a set of 
equations (in a suitable embedding space) underlies the dynamics. In this case the trajec- 
tory can be predicted whenever the initial conditions are known with absolute precision. 
On the contrary, a stochastic system is characterised by a complete unpredictability of the 
trajectories. Time series may be derived from mathematical models, either from mappings 
or from continuous models. The time series may be also provided by experimental data, 
derived, e.g. , from astronomy. physics, medicine and biology. In particular, we present 
an analysis of neuro-biological data, where the discrete time series are obtained from the 
epochs of action potentials of nervous cells (i.e., spzke t rams) .  We refer to Babloyantz 
and Salazar (1985), Celletti and Villa (1996), Mpitsos et al. (1988), Rapp et al. (1985) 
for extensive applications of dynamical system methods to neurobiology. 

In recent years several techniques have been extensively developed to determine the 
deterministic or stochastic behaviour of a time series (Abarbanel et al. 1993, Boffetta 
et al. 1998, Celletti et al. 1999, Cellucci et al. 1997, Gao and Zheng 1993, Eckmann and 
Ruelle 1985, Kaplan and Glass 1992. Rapp et al. 1993, Sugihara and May 1990, Theiler 
et al. 1992). An exhaustive description of methods in nonlinear time series analysis 
is presented in Hegger et al. (1999), Schreiber (1998). Beside the characterisation of 
the embedding space, topological and metric invariants can be determined. On the one 
hand, the method developed by Grassberger and Procaccia (1983) allows computation 
of the size of the attractor, i.e. the so-called correlatzon damensaon. On the other hand, 
the computation of Lyapunov exponents quantifies the divergence of nearby trajectories, 
providing an analysis of the structure of the attractor (Damming and Mitschke 1993, 
Eckmann et al. 1986, Kantz 1994, Packard et al. 1980, Rosenstein et al. 1993. PVolf et al. 
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1985, Zeng et al. 1991). We devote Section 2 to the definitions of fractal dimensions; a 
review of the Grassberger and Procaccia method and of the basic techniques to compute 
Lypaunov exponents is presented in Sections 3 and 4, respectively. 

-4 common hindrance of most methods is a severe constraint due to the necessity of 
having a suficiently large number of points in the time series in order to  avoid unreliable 
results due to poor statistics. During physical experiments long observations may be 
corrupted by drifts and non stationarities which may lead to incorrect results. Therefore, 
the availability of long time series can be a serious limitation in the investigation of 
nonlinear dynamics in physical systems. We stress that the statistics required by standard 
investigation methods usually prevents the applicability of the algorithms in realistic 
situations. The development of methods able to distinguish the deterministic character 
of short time series becomes an important issue for future research in this field. 

A new method to provide information on the deterministic properties of time series 
{xi}, i = 1, ... K ,  with a significant but not too large number of points was presented 
in Celletti et al. (1999). In particular, this algorithm was applied to the 2-dimensional 
HCnon mapping taking K = 400 and to the Rossler system with K = 1000. In Section 
5 we explore in more detail the method presented in Celletti et al. (1999), providing a 
large variety of applications to discrete and continuous systems, as well as to surrogate 
data (see Section 6). We provide also a validation for the choice of the parameters on 
which the method depends. Among the mathematical models we have investigated, we 
selected the mappings known as H h o n  (and its extension in 4 dimensions), Kaplan- 
Yorke, Zaslavskii, Ikeda, Sinai and the continuous systems known as Lorenz, Rossler and 
the hyperchaotic Rossler attractor. The time series were constructed as the iterates of 
one variable with only K = 1000 points. In all cases the deterministic behaviour of 
the system was correctly detected. Moreover, we use the method presented in Celletti 
et al. (1999) to give an estimate of the maximum Lyapunov exponent (or Lyapunov 
characteristic estimate, hereafter LCE). We perform a comparison of the LCE with the 
classical numerical expectations. In order to explore the robustness of the method, we 
analyse the effect of additive, dynamical and experimental noise. The stochastic behaviour 
is already observed with noise levels of 5%. The results suggest a much higher sensitivity of 
our method with comparison to other algorithms, such as the Grassberger and Procaccia. 
As a further check, we test the method on several sets of surrogate data and we always 
observe a stochastic behaviour. 

A question was left open in Celletti et al. (1999), namely the effectiveness of the 
method when applied to realistic situations. To this end, we consider in Section 6 experi- 
mental time series derived from electro-physiological recordings of neuronal discharges in 
the cerebral cortex of anaesthetised mice and in the red nucleus of behaving rats. Al- 
though the majority of these experimental data show a stochastic behaviour, some cases 
reveal a deterministic behaviour in low-dimensional spaces. 

The method presented in Section 5 does not provide reliable results in some specific 
cases of symplectic mappings (precisely, regular motions and weak chaos). In Lega et al., 
(2000) alternative methods based on the technique of Section 5 have been developed to 
deal with such degenerate cases. The most promising algorithm is briefly summarised in 
Section 7 .  The conclusions are discussed in Section 8. 

A practical implementation of many algorithms from time series analysis can be found 
in h t t p :  //uww .neuroheuristic . org where a virtual laboratory is installed. 

http://nhrg.unil.ch/
http://nhrg.unil.ch/
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2 Fractal dimensions 

Given a set of points, fractal dimensions are related to the way the density of points 
scales with small volumes surrounding the points (Abarbanel, 1996). The simplest way 
to assign a fractal dimension is obtained by a box-counting method. Sets with noninteger 
dimension are called fractals. To introduce the box-counting dimension, consider a set 
in an JV-dimensional space. which we cover by a grid of N-dimensional cubes of side r.
Let iv(r) be the number of cubes which are needed to cover the set. The box-counting 
dimension is defined as 

D l' log iv(r)
o = r� log ( ¥)

As an example, we consider the middle third Cantor set. To compute its box-counting 
dimension, we define a sequence r n with the property that limn➔oo r n = 0. Then Do can
be rewritten as 

Do= Jim logiv(rn)
n➔oo log (in) 

In particular, one can take rn = 1/3n , so that N(rn ) = 2n and Do= log2/log3 � 0.63, 
providing the fractal property of the Cantor set. 

As an extension of the box-counting dimension, one defines the following family of 
generalised dimensions, which depend on an index q:

D _ 1 
1
. logl(q,r)q - - !ill 

( ) ' 
1- q r➔o log f 

where l(q,r) =I:!(;)µ; and the sum is over all N(r) cubes of unit sizer which are 
needed to cover the attractor. The quantities µi are the natural measure of the attractor. 
More precisely, if the attractor is coYered by a grid of cubes C;. for any x0 in the basin of 
attraction, let us define 

r TJ(Ci, Xo, T) 
µi

=

T� T 
where rJ(Ci, x0, T) is the time spent in Ci by the orbit starting from x0 for any 0 � t � T. 

For q = 1 one has the information dimension D1: let the attractor be_ covered by iv(r)
cubes of size r and let Pi be the probability to visit the i-th cube. Then D1 is defined as

._--,iv(r) I D I. - L..i=l Pi og Pi 1 = !ill-��---- .
r->O llog rl 

For q = 2, one obtains the correlation dimension D2 which will be introduced in the 
following section, being at the basis of the Grassberger and Procaccia method. 

3 The method of Grassberger and Procaccia 

A basic problem when dealing with discrete time series is to ascertain whether the series 
is produced by a deterministic or stochastic system. In the first case, one assumes there 
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exists a set of equations governing the dynamics in a suitable embedding space. In the 
latter case, due to the randomness of stochastic motion, no forecasting can exist on the 
dynamics. Among several methods available for classification of discrete time series the 
algorithm of Grassberger and Procaccia (1983), hereafter referred to as G P  method, has 
been widely applied to theoretical and experimental cases. If the observable is determin- 
istic the G P  method enables to determination of the dimensions of the embedding space 
and of the attractor. We briefly recall the method as follows. Let ( 5 1 ,  ..., z ~ }  (x, E R) 
be a discrete time series composed by K points. In a d-dimensional embedding space, 
define the set Y = { y l .  . . .y N }  (S = K - d + 1) of delay vectors as 

Y1 = (51*...rxd) 

Y2 = ( 5 2 .  . . . , X d + l )  

... 

Let r > 0 and for any y j  E Y ,  let n3(r; d )  be the number of points yz E Rd (z  # J )  which 
are contained in the d-dimensional hypersphere of radius r around y3, i.e. 

N 

nj ( r ;  d )  @(r - (1Yz - gj/ld) 3 
Z=l,t#j 

where @ is the Heaviside function (2.e. @(z)=l for 520, 
the Euclidean norm in Rd. We define the correlatzon zntegral functions as 

@(x)=O for x<O) and / I  . / I d  is 

The correlation dimension 0 2  is related to C,v,d(r) by 

for d sufficiently large. We remark that the correlation dimension corresponds to the 
generalised dimension of order q = 2, since it can be shown that CN,d( r )  scales as I ( 2 ,  r ) .  
Moreover, one has the inequalities 0 2  5 D1 5 Do; if the points on the attractor are 
uniformly distributed, then 0 2  = D1 = Do. The correlation dimension corresponds to 
the slope of the graph logCN,d(r)  against logr,  whenever its value is nearly constant as 
the embedding dimension d is varied (see Figure la ) .  This algorithm enables computation 
of the correlation dimension as well as the dimension of the embedding space, provided 
that the slopes of the above curves are definitely convergent. .4 stochastic behaviour is 
given by a constant increase of the slopes with d (see Figure lb).  

In practical applications, the slope of the curves logCN,d(r) against logr must be 
evaluated in a meaningful range of values of the radius, say (rg, T I ) .  denoted as the scaling 
region. Below TO the curves are distorted since few points are counted in the hypersphere of 
radius ro, while above r1 the curves tend to flatten since the attractor has finite size. The 
relation between the minimum amplitude of the scaling region and the number of points 
forming the time series was investigated in Eckmann and Ruelle, (1992). An extension of 
the Grassberger and Procaccia method to analyse the joint behaviour of two (or more) 
time series was investigated in Celletti et al. (1998). 
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Figure 1. Graphs of logCN,d(r) against logr f o r  embedding dimensions d = 1, ..., 8: 
(a)  the deterministic behaviour i s  indicated by the parallelism of the curves f r o m  d = 2; 
( b )  the stochastic character is  determined by the divergence of the  slopes of the correlation 
integral curves. 

4 Lyapunov exponents 

The calculation of the Lyapunov exponents (Benettin and Galgani 1979, Benettin et al. 
1980, Damming and Mitschke 1993, Eckmann et al. 1986, Kantz 1994, Packard et al. 
1980, Rosenstein et al. 1993, Wolf et al. 1985, Zeng et al. 1991) provides information on 
the evolution of the motion and, more precisely, the rate of divergence of nearby orbits. 

Most methods for determining the Lyapunov exponents are based on the following idea 
introduced in Benettin and Galgani (1979), Benettin et al. (1980). Compute the spectrum 
of the Lyapunov exponents following the evolution of a set of tangential vectors, which 
might be approximated by small distance vectors. A renormalisation procedure is applied 
at given intervals of time in order to control the overflow of chaotic orbits. More precisely, 
consider two orbits starting at Po and PA with dist(Po, Pi) = do (Figure 2).  

I 

PO, 

Id0 
0 

PO P 
1 

I 

II 

" 7  
Figure 2. The  Benet t in  and Galgani method (see Benet t in  and Galgani, 1979). 

After a time h, Po evolves into PI and PA into Pi with dist(Pl,Pi)  = dl. By a 
homothesis of the centre P I  and of the ratio do /d l ,  one finds a new point P;' at distance 
do from PI.  Iterating this process (with new initial data Pl, P;') one obtains a sequence 
of points at distances dl, dz,  d3, ... The quantity: 
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tends to a limit, which is the largest Lyapunov characteristic estimate as the number n 
tends to infinity and as the distance do tends to zero. We remark that in order to apply 
the above method. it is essential to know the explicit equations governing the dynamics. 
However. the previous technique can be adapted to investigate discrete time series as 
described in Wolf et al. (1985). More precisely, follow the evolution of two points PO, Pi. 
until their distance exceeds a given value. (Figure 3). Let PI, P: be the evolved points; 
replace Pi with a point P: closer to Pl and such that the vector PIPP has the same 
orientation as PIP:. Let { t k }  be the sequence of times a t  which the replacements take 
place and let d ( t k )  =dist(Pk. Pi ) ,  d ' ( t k )  =dist(Pk. PL). The largest Lyapunov exponent is 
defined as 

where n is the total number of replacements. 

I 

r i 1  
I 

I I 

P 
3 

P 
Figure 3. The Wolf et al. method (see Wolf et al., 1985). 

2 
P Po 1 

An alternative method to compute the whole spectrum of the Lyapunov exponents 
was developed in Eckmann et al. (1986). Suppose that the dynamics is ruled by 

xn+1 = f ( sn )  

and let D,,, (g) . We look for an approximation of D,, using the experimental 
T^ 

data as follows. Conside; the evolution of the points Pi, whose distance from a preassigned 
point P, is less than r ,  (Figure 4). Consider those points whose images P:+, are still at 
distances less than r from Pz+m. Determine D,, with a least square approximation over 
the points Pi, so that 

Determine the matrices Ox,+,, D,,+2m. ... in the same way. Next, let us decompose the 
matrix D,, as D,, = QIR1, where Q1 is an orthogonal matrix, while RI is an upper 
triangular matrix with non-zero diagonal elements. Analogously, let Dxl+,Q1 = QZ R2, 
..., Dxl+nmQn = Qn+l&+l. The Lyapunov exponents are given by the formula 

Dx,[P,I - Pi] N Pi+,,, - Pi+m 

. M-1 

where 7 is the sampling time step, (R3)kk is the k-th diagonal element of Rj and hi' is the 
available number of matrices. 
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Figure 4. The Eckmann et al. method {see Eckmann et al., 1986). 

5 A method for short time series 

345 

The main drawback of the methods for computing Lyapunov exponents and correlation 
dimensions consists in the large number of points required to avoid inaccuracy and errors 
during the calculation. A careful analysis of the minimal number of points necessary to 
compute correlation dimension and Lyapunov exponents has been presented in Eckmann 
and Ruelle (1992). In addition, the calculation of the methods presented in Sections 3 
and 4 often relies on the choice of some parameters, which are not easily selected. In this 
section, we review the method presented in Cell et ti et al.,. ( 1999) to assess the deterministic 
character of short time series ( typically composed by 1000 points), providing more details 
for the criterion of selection of the parameters on which the method depends. 

Let {xi}, l = l, ... , K, be a discrete time series with K points. We then consider 
delay coordinates in a d-dimensional embedding space, setting Yj = (xj, ... , Xj+d-i) for 
j = l, ... , K - d + l. Denote by Pj = (yj) a point in the embedding space and let 
PY) = (Yj+k) be the k-th iterate of Pj , For r0 > 0, let n(r0) be the number of pairs 
(Pi,Pj ), i < j, such that d\Jl = IIPi - Pj lld � ro, We denote by d\1) = IIP?l - P?)lld 
the distance between the k-th iterates of P;, Pj , Let a:\;l = log(d\;l /d\Jl) and let 

_1_ '"' O:(k) =

- n(ro) Lt iJ 
{i,j:d;Jl::;ro} 

1 d(k) 

( ) L log ��
) 

.
n ro o d . {i,j:dV'.Sro} IJ 

(1) 

We refer to >-1 (r0) as the Lyapunov characteristic estimate (LCE). An estimate of the LCE 
can be equivalently obtained as >-k (r0 )/k. We may therefore set the following criteria: 

1. In a low-dimensional deterministic system, there exists a suitable interval of initial
distances r0 in which, for a fixed k, the value of the LCE is nearly constant; the
curves >-k(ro) against r0 tend to become parallel because the values >..k (r0 )/k are
nearly equal as k is varied.

2. In stochastic or higher dimensional deterministic systems, the value of the LCE,
for a fixed k, decreases with r0, due to the unpredictability character of stochastic
dynamics; the curves Ak(ro) against r0 tend to converge to the same limit.
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Note that the above criteria depends only on two parameters: the iteration parameter k 
and the initial distance T O .  The value of the largest LCE is given by Xl(ro) when it is 
nearly constant with the initial distance ro. 
Remark: The measure at the basis of our method (i.e., the quantity & ( T O ) )  was intro- 
duced in other studies (Boffetta et al. 1998, Cellucci et al. 1997, Gao and Zheng 1993, 
Kantz 1994), though the analysis of short time series (like those studied in the present 
section) was not performed and simple criteria for applicability to real situations were not 
discussed. In particular, Gao and Zheng (1993) proposed a local exponential divergence 
plot aimed a t  determining the minimal embedding dimension. An algorithm to detect 
noise corruption was presented by Cellucci et al. (1997). A measure similar to LCE has 
been suggested to compute Lyapunov exponents for dynamical systems characterised by 
different time scales (Boffetta et al. 1998). The dependence of the LCE upon noise was 
investigated in Damming and Mitschke (1993). 

5.1 Choice of the iteration parameter 

A variation of the iteration parameter k implies a comparison of the initial distance d$) of 
some pairs of points, say Pi and Pj, with the distance d$) after IC iterations of the above 
points. In order to keep control of the divergence of the corresponding trajectories, it is 
essential to take a reasonable low value of the iteration parameter, since in a deterministic 
chaotic system the trajectories diverge exponentially. It is rational to consider a maximum 
number of k = 5 iterations as sufficient to control the separation of the orbits. 

5.2 Choice of the initial distance 

As mentioned in Celletti et al. (1999), the value of the initial distance is crucial for 
the statistics of our method: for a small value of ro, the number of pairs within ro is 
generally too small to provide meaningful results. On the contrary, if T O  is too large all 
points of the embedding space will be included, eventually exceeding the actual size of 
the attractor, if any. If K denotes the number of points which form the time series, we 
have heuristically determined to select an optimal value rmax for the distance T O  such that 
n(rmm) = K2/100, where n(rmaX) is the number of pairs (Pi, Pj), i < j ,  whose distance 
is less than or equal to rmax. The validation of this 'rule of the thumb' has been performed 
by a x2 comparison of the distribution of the X,(T,,) with the classical numerical result, 
when dealing with explicitly known dynamical systems. The rationale is that for optimal 
values of TO the LCE-curves are flat parallel lines and in the case of low-dimensional 
systems the value of the estimated LCE is nearly constant on this plateau. The classical 
numerical estimate of the LCE is performed as follows (FroeschlC, 1984): let M : Rd -+ Rd 
be a mapping in a d-dimensional embedding space. We derive the tangent mapping at a 
point zo E Rd, say OM(zo) ,  and for a given initial vector vo E Rd we compute the image 
point as v1 = DM(z0)vo. After normalising the sequence of vectors, the greater LCE is 
given by 

where No is a suitable number of iterations a t  which convergence is reached. 
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0.01 

A X2-test is performed between the LCE computed as in (2) and as in (1) with k = 1. 
More precisely, let [a ,  b )  be an interval in R; consider a pairwise disjoint partition of [a, b ) ,  
say.[a, b)  ~ l " , ~ [ a ~ , b ~ )  for a suitable n > 1. For a given ro, we denote by Il1([allbl))  the 
number of values a!;', i = 1, ..., K - 1, j = i + 1, ..., K ,  belonging to the interval [al, b l ) .  

Using the same notation, II2([al, b o )  is the number of values log I ' v z + l l ' d  i = 1 1 ... 1 No, m' 
which fall in the interval [ai, bl) .  

The standard X2-value is provided by 

n 

x2(ro) f C[n,([a,, b l ) )  - n2([a1, b1))I2 ' 

1=1 

\ 

Notice that the quantities CY!;) and henceforth n , ( [ a l , b l ) )  depend on T O .  The value Toptima] 

a t  which xz as a function of T O  reaches its minimum is the optimal initial distance a t  which 
the LCE computed as Xl(ro) (see (1)) is the nearest to the classical numerical value. 

The validation by this test was performed on well known low-dimensional mathemat- 
ical models, the H h o n  and the Sinai mappings (see also section 6). In Figure 5 we 
illustrate the corresponding X2-functions. Note that rOptimal determined as the minimum 
of the Xz-function nearly coincides with T,,, such that n(rmaX) = K2/100: for the H6non 
case, taking K = 1000 we have rOptimal N 0.02, rmaX N 0.014, while for the Sinai map we 
have rOptimd N 0.067, T,, 1: 0.064. 

0.041 

n 

L 
0 

W 

L 
OO 0.2 0.4 

ro 

0.02/j 

0.2 0.4 
r, 1 

Figure 5. The curves x2(ro)  against ro are displayed for: ( a )  The He'non mapping with 
initial data xo = 0.6, yo = 0.19 and for the parameters: a = 1.6, b = 0.1 (d = 2); ( b )  The 
Sinai mapping with xo = 0.1, yo = 0.1 and A = 0.1 (d = 2). 

5.3 Embedding dimension 

We shall now address the problem of the choice of the embedding dimension d ,  which was 
considered as fixed in the above discussion. For a generic time series {x3}, j = 1, ..., K ,  
we consider embedding spaces whose dimension is related to  the number K of points 
available. For example, if K = 1000 we let d vary between 2 and 8, according to  the 
fundamental limitation provided in Eckmann and Ruelle (1992). When a deterministic 
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case is detected its embedding dimension is computed as the value a t  which the curves 
X k ( ~ 0 )  against T~ are straight and parallel lines as the iteration parameter IC is varied. 
However, we want to stress that in order to reconstruct the attractor’s dynamics it might 
be necessary to embed the trajectory in a space whose dimension is greater than the true 
dimension of the state space (compare with Eckmann et al., 1986). 

6 Applications 

Discrete time series may be derived from mappings, continuous systems (taking the dis- 
cretisation over finite times) or experimental data. With explicit dynamical systems, 
the time series is formed by the iterations of one observable, typically one of the sys- 
tem’s coordinate. IVe consider several examples of low-dimensional mappings and apply 
the method to characterise the deterministic system, compute the Lyapunov exponents 
and compare the results with the classical numerical ones (see Section 6.1). Continuous 
systems are analysed in Section 6.2 and analyses of experimental data derived from neuro- 
biology (precisely. from the epochs of action potentials in electro-physiological recordings) 
are presented in Section 6.3. 1;alidation of the method by considering surrogate data and 
simulated spike trains is presented in Section 6.4. 

6.1 Mappings 

Below is a list of dissipative mappings and the corresponding tables reporting the values of 
the LCE (A,) and its classical numerical estimate (XC) for several choices of the parameters 
of the mappings. In all cases the time series was constructed as the iterates of the x- 
component with K = 1000 points and XI was calculated for TO = rmU. We refer to 
Celletti et al. (1999) for a more extensive discussion of the 2-dimensional H6non mapping 
and of the Rossler system. 

6.1.1 HBnon mapping (2-dimensional) 

It is defined by the equations 

x’ = -ax2+y+l 
y‘ = bx , 

x, y E R and a. b E R. Let Xc be the classical numerical estimate of the LCE and XI be 
the value obtained as in Section 5. with an embedding dimension d = 2; let 50, yo be the 
initial conditions. 

20 Yo U b XC X I  ( d =  2) 
0.6 0.19 1.6 0.1 0.352 0.325 
0.5 0.20 1.6 0.1 0.354 0.311 
0.4 0.10 1.4 0.15 0.349 0.331 
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6.1.2 HBnon mapping (4-dimensional) 

It is defined by the equations 

x’ = - a x 2 + y + l  
y’ = bx + h t  , 
z’ = - d z 2  + t + 1 , 
t’ = - b ’ t +  hx , 

x, y, t ,  t E R and a,  b, a’, b’, h E R. We adopt the same notations as before for Xc and 
A l .  

20 YO t o  t o  a b a’ b‘ h Xc X1 (d = 4) 
0.6 0.19 0.62 
0.6 0.19 0.62 
0.6 0.19 0.62 
0.6 0.19 0.62 
0.6 0.19 0.62 
0.5 0.21 0.82 
0.5 0.21 0.82 
0.62 0.18 0.62 
0.62 0.18 0.62 
0.62 0.18 0.62 

0.192 
0.192 
0.192 
0.192 
0.192 
0.4 
0.4 
0.19 
0.19 
0.19 

1.4 0.3 1.6 0.6 0.01 0.405 0.378 
1.4 0.3 1.6 0.6 0.001 0.420 0.380 
1.4 0.3 1.6 0.6 0.03 0.400 0.363 
1.6 0.2 1.2 0.1 0.001 0.440 0.460 
1.6 0.2 1.2 0.1 0.005 0.440 0.474 
1.6 0.2 1.2 0.1 0.001 0.440 0.493 
1.6 0.2 1.2 0.1 0.005 0.441 0.468 
1.6 0.2 1.2 0.1 0.001 0.440 0.465 
1.4 0.31 1.61 0.6 0.01 0.430 0.394 
1.4 0.31 1.61 0.6 0.001 0.423 0.371 

6.1.3 Kaplan-Yorke map 

It is defined by the equations 

5’ = ax (mod 1) 
y’ = cyy+bcos(2c~x) , 

x, y E R, a, b, c, cy E R. In a 2-dimensional embedding space, for any initial conditions 
we have the following results. 

a b c  cy Xc A1 ( d =  2) 
3 2 1 0.2 1.099 1.164 
3 2 1 0.25 1.099 1.164 
3 2 1 0.5 1.099 1.164 
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6.1.4 Zaslavskii map 

It is defined by the equations 

z’ = z+2: ( l+ /*y)+EVpCoSz (mod 27r) 
y’ = e-’(y+Ecosz) . 

where z, y E R and the parameters are real numbers with 

p = (1 - e-7)/T 

2: = (4/3).  100. 
Taking the initial conditions 50 = yo = 0, we have the following results. 

0.1 3 0.758 0.683 
0.15 3 1.278 1.324 
0.3 3 1.928 1.773 
0.2 2 1.426 1.468 
0.2 4 1.358 1.347 
0.3 4 1.922 1.765 
0.4 4 2.158 1.931 

6.1.5 Ikeda map 

Let 

where z E C and p ,  B, k .  a E R. We rewrite (3) in its real form as 

2’ = + B e ~ k - z a l ( l + l ~ / ?  . (3) 

Q Ly 
z‘ = p + Bcos(k - ) x - Bsin(k - )Y 1 + x2 + y2 1 + x2 + y2 

0 cy 
y‘ = B c o s ( k  - ) y + Bsin(k - ) x  1 + 2 2  + y2 1 + x2 + y* 

and take k = 0.4. In this example, the best XI is always obtained in a 3-dimensional 
embedding space. For comparison, we report also the value corresponding to d = 2. 

2 0  Yo P B Q  Xc X1(d= 3) X1(d= 2) 
0.1 0.5 1 0.9 6 0.507 0.488 1.092 
0.1 0.1 1 0.9 6 0.507 0.410 1.030 
0.1 0.1 1 0.9 6.5 0.487 0.443 1.178 
0.1 0.1 0.9 0.9 6 0.420 0.382 0.943 
0.1 0.1 1.1 0.8 6 0.466 0.454 0.800 
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6.1.6 Sinai map 

x’ = x + y +  Acos(27ry) (mod 1) 

y’ = x + y  (mod 1) , 
where x, y E R, A E R. We take xo = yo = 0.1; the correct value of X1 is in some cases 
obtained taking a higher dimensional embedding space. 

A Xc X l ( d  = 3) X1(d= 2) 
0.1 0.687 0.555 0.638 
0.3 0.614 0.705 1.080 

0.01 0.693 0.661 0.577 
0.005 0.693 0.706 0.644 
0.12 0.685 0.617 0.758 
0.15 0.681 0.612 0.993 

6.2 Continuous systems 

For continuous systems the 1000 points time series are derived from the x’ iterates of 
the discretised x-component, when integrating by, e.g., a Runge-Kutta method. The 
experimental time series x” were constructed by taking the series formed by the intervals 

of conservative systems should be carefully taken into account. In the present study the 
experimental time series x” were arbitrarily scaled in such a way that xkax = 100000, 
which represents a very high resolution. For comparison with the electro-physiological 
spike trains the series generated out of the continuous systems were characterised by a 
pseudo ‘firing rate’ of 0.1 spikes/s. 

We have tested our method for three continuous systems whose data were contami- 
nated by various levels of noise . In particular, we show the results of the effect of 5% 
additive, dynamical and experimental noise. For continuous systems, the computation of 
the LCE definitely requires more than 1000 points. However, we show that the method is 
still able to detect the deterministic behaviour when data series of length K = 1000 are 
considered. 

x!’ I = x! - x:. The resolution of the time series generated from the regular dynamics 

6.2.1 Lorenz system (3-dimensional) 

It is defined by the equations 

x =  4 Y  - x) 
6 = z ( R - z ) - y  
i = X Y -  bz 

Figure 6 shows the curves X ~ ( T ~ )  as functions of the initial distance TO (for k = 1, ..., 5) 
for the parameters o = 16, R = 45.92, b = 4. In Figure 6(a) the application of our 
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method to the plain time series indicates that the curves tend to become parallel and flat. 
Conversely, for 5% additive. dynamical and experimental noise. Figures 6(b), 6(c) and 
6(d) respectively, show that curves are not parallel. We tested the Lorenz system also for 
two other choices of parameters, namely for 0 = 10. R = 28, b = 8/3 and for 0 = 16, 
R = 40, b = 4. In both such cases our method differentiated the plain time series from 
the 5% noisy series. 

z 2- l  

0 0.01 002 0 03 0 001 0.02 0 03 0.04 

'0 '0 

h - L 0 Y 1  I] h,, (; h, 
x - 

0 0 
0 0 01 0.02 0.03 0 0.005 0.01 

' 0  ' 0  

Figure 6. The Lorenz system embedded in a 3-dimensional space is considered for the 
parameters 0 = 16, R = 45.92, b = 4. ( a )  The graphs refer to the curves Xk(r-0) against 
ro as IC = 1, ..., 5 for a 1000 points time series. ( b )  Analysis of the original time series 
with 5% additive noise; (c)  5% dynamical noise; ( d )  5% experimental noise. 

6.2.2 RGssler system (3-dimensional) 

It is defined by the equations 

x =  -y - z 
y = z + a y  

i = b + z ( s - c )  

Figure 7 shows the curves X I ; ( T ~ )  against ro as IC = 1, .... 5 for the parameters a = 0.2, 
b = 0.2 and c = 10 for the plain, 5% additive, dynamical and experimental noisy time 
series. We tested the Rossler system also for the following choices of parameters: a = 0.2, 
b = 0.4, c = 5 .7 :  a = 0.2, b = 0.2, c = 5.7; a = 0.15, b = 0.2, c = 10. In all cases the plot 
of & ( T O )  against T~ allowed to discriminate plain series from 5% noisy series. 
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0 001 002 0.03 004 

' l J  

I 
0 0.02 0.04 0.06 0 0.005 0.01 0.015 

' 0  r 0  

Figure 7. The Rossler system in a 3-dimensional space is considered for the parameters 
a = 0.2, b = 0.2, c = 10. (a) The graphs refer to the curves Xk(r0) against TO as k = 1, ..., 5 
for a 1000 points time series. ( b )  Analysis of the original time series with 5% additive 
noise; ( c )  5% dynamical noise; ( d )  5% experimental noise. 

6.2.3 Hyperchaotic Rossler system (4-dimensional) 

It is defined by the equations 

5 = - y - z  

i = b + x z  
= z + a y + w  

W = c w - d z ,  

We considered this system for the parameters a = 0.25, b = 0.3, c = 0.05, d = 0.5. 
Figure 8 shows the curves Xk(r0) against ro as k = 1, ..., 5 for the plain, 5% additive, 
dynamical and experimental noisy time series. 

6.3 Neuro-biological data 

The basic frequency of a neuron is usually in the range 1-5 Hz, allowing the neuron to be 
ready to transmit information. When excited, the frequency of the neuron may increase 
up to 50 H z ,  sometimes even up to 500 H z  for few a milliseconds. Let { t j }  be the se- 
quence of firing times of a given neuron. We analysed several data sets collected during 
neuro-biological experiments under different recording conditions. All experiments were 
performed in compliance with the guidelines for the care and use of laboratory animals 
edited by the Society of Neuroscience and after receiving governmental veterinary a p  
proval. Extracellular single unit recordings were made with glass-coated tungsten micro- 
electrodes having an impedance in the range 0.5-2 MO measured at a frequency of 1kHz. 
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Figure 8. The hyperchaotic Rossler system in a 4-dimensional space is considered for 
the parameters a = 0.25, b = 0.3, c = 0.05, d = 0.5. ( a )  The graphs refer to the curves 
&(TO) against ro as k = 1, ..., 5 for a 1000 points time series. ( b )  Analysis of the original 
time series with 5% additive noise; (c) 5% dynamical noise; ( d )  5% experimental noise. 

All recordings were stationary as it pertains to the normal electro-physiological criteria. 
The firing times {t,} of the nervous cells were stored digitally for off-line analysis. The 
spike train is provided by the discrete time series formed by consecutive intervals of firing, 
i.e. {q, ... ,x3, ..., x ~ }  5 { t l  - to,  . . . , t ,  - t J - l ,  ..., t~ - tK-l},  where the experiments are 
performed up to time t ~ .  We considered only time series with a minimum of 800 points. 

The dynamics of 214 spike trains recorded in the temporal cortex of anesthetised mice 
(Schwaller et al., 1998) were investigated by using both the GP method and the method 
of Section 5. The firing rate of these cells extended over the range 0.43-1.99 spikes/s. The 
accuracy of the time epochs was set to 1 ms. Note that the temporal cortex receives inputs 
from the auditory system and is connected to other sensory and associative cortical areas. 
The anaesthetic condition was maintained in a steady state throughout the recording 
session. The data analysed here concern only those periods of time when no external 
stimuli was applied (so-called 'spontaneous activity', labelled as sp) .  Up to ten blocks of 
100 seconds each were cumulated for the analysis of single spike trains. 

Another set of data consisted in 139 spike trains recorded in the red nucleus neurons of 
conscious freely moving rats while they performed a simple forelimb reaching movement 
with the contralateral forepaw. This nucleus is an important centre of the motor system. 
The data were provided by Brian Hyland at  the Department of Physiology, University 
of Otago, New Zealand. The firing rate of these neurons varied between 7.5 and 43.2 
spikes/s. The accuracy of spikes timing was set to 0.1 ms, thus providing a comparable 
resolution with the other data set described above. The relationship of activity changes 
in these neurons to phase of task performance is reported elsewhere (Hyland and Jarratt, 
1999). Data were recorded continually while the animals repeatedly reached for, grasped, 
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and then consumed small pieces of food. For analysis, data were segmented into 2 sets 
thus providing 278 time series. Each set made up of multiple blocks of 4 seconds each. 
One set, referred to as mvt, included the 2 seconds before and after each occasion the 
food was grasped, and so included the acts of reaching, grasping, and withdrawing of the 
food. The other set was made up of blocks taken from periods between reaching episodes 
and is referred to as a control period (ctl). 

Spike train Rec K d dGP D2 
m2agc2.12A sp 921 4 4 1.50 
mlahc1.13-3 sp 1073 5 5 0.92 
mlbac2.12-B sp 1050 5 5 1.66 
m l  bdc6.09-4 sp 2367 4 4 0.28 

rnOlc6-1.All ctl 1037 6 5 3.80 
rn22c08.A2 ctl 1248 5 4 3.40 
rn18c07.All ctl 1441 5 4 0.46 
rn04c05.Al ctl 1941 5 4 2.03 
rn29c08.Al ctl 1083 4 4 1.39 
rn07c07.All mvt 1050 4 4 0.31 
rn08c08.A2 mvt 2072 4 4 2.60 

By using the GP method we found 13/214 and 21/278 spike trains which exhibited 
a chaotic attractor in the mice temporal cortex and the rat red nucleus, respectively. 
Our method confirmed that 11/34 cases do show clear features of deterministic systems 
embedded in a low-dimensional space. These results are reported in Table I, where Rec 
indicates the recording condition, K denotes the total number of points, d is the em- 
bedding dimension at  which the series are deterministic according to our algorithm, dGp 
and 0 2  are the embedding and correlation dimensions as provided by the GP  method. 
Figure 9 illustrates one experimental case of deterministic dynamics observed in the red 
nucleus of freely moving rats during the control period. 

6.4 Surrogate data 

The method was tested on several sets of surrogate data derived from the original discrete 
time series. We considered the time series as point processes, i.e. {x,} z { t 3 } .  The 
intervals between two consecutive points {t, - t 3 - l }  were randomly shuffled. In such a 
way the first-order statistics (i.e., the time interval histogram) remained unchanged but 
the dynamics was completely scrambled. This construction of surrogate time series was 
applied to deterministic mappings, continuous systems and experimental data. In addi- 
tion, to test the method on simulated spike trains we created surrogate data according to 
Abeles and Gerstein (1988) as realisations of non-stationary Poisson processes at  different 
firing rates and different rates of fluctuations. We examined about 200 surrogate data 
sets with K = 1000 points and we always found that the LCE curves were not parallel, 
not straight lines, no matter what the embedding dimension was (up to d = 8). 

In a few cases we noticed that the application of the GP method to simulated spike 
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Figure 9. A neuro-biological application is considered. The example refers to the spike 
train rn18c07.All and includes 1441 points. The curues X ~ ( T O )  against ro are shown 
as k = 1, ..., 5 and for  embedding dimensions d = 2, ..., 7 .  A deterministic behaviour is 
observed for  an embedding dimension d 2 5 .  

trains could suggest a deterministic behaviour, even if all spike intervals were generated 
by chance. Figure 10 illustrates the analysis of a spike train generated according to a 
non-stationary Poisson distribution with fast fluctuation (0.05 s) of firing rate (Tetko and 
Villa, 1997). The average firing rate was 3.7 spikes/s and it fluctuated in range of 0-54 
spikes/s. The application of our algorithm did not detect any deterministic behaviour 
for all analysed embedding dimensions. However, such behaviour was detected by the 
G P  method. 
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Figure 10. Dynamical system analysis of a simulated spike train generated b y  non- 
stationary Poisson distribution. ( a )  The GP algorithm detects deterministic behaviour 
with d G p  = 4, D2 = 2.08. The scaling region is enhanced b y  grey lines. The curves X k ( r - 0 )  

against ro are plotted for k = 1,. . . , 5  within an embedding space of dimension d = 4 in 
( b )  and dimension d = 7 in ( e ) .  Note that no deterministic behaviour is observed. 

7 Other methods for short time series 

The method presented in Section 5 works properly in many dynamical situations, partic- 
ularly when dealing with chaotic regimes of conservative mappings and when analysing 
dissipative systems. However, some dynamics of conservative mappings cannot be satis- 
factorily investigated with the method of Section 5 .  Precisely, for the analysis of regular 
orbits and of weak chaotic motions, one needs to apply slightly different techniques as 
provided in (Lega et al., 2000). 

d!k! 

4. i  
Recalling the notations of Section 5 ,  let a::) 3 log%. Let x k  be the average of a$) 

over the (N - k )  pairs of nearest neighbours having distances d!P,) (N = K - d + 1): 

The LCE is provided by or equivalently by x k / k .  A mixed method which results as 
a compromise between (1) and (4 )  can be obtained as follows. For each point P3 locate 
its nearest neighbour P,. Order the distances d!:) between nearest neighbours from the 
smallest to the largest and consider only the first h pairs of nearest neighbours. In Lega 
et al. (2000) the first h = ( N  - k)/10 pairs were considered in order to cover the orbit as 
much as possible and to have small initial distance vectors. Consider the images P,’k’ and 
PJk) after k iterations until their distance d$) becomes greater than a given threshold T O .  
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Let k(P, ,P , )  be the time necessary for d{P,) to become greater than the threshold TO. 
Excluding the pairs whose initial distance is greater than T O ,  define 

and call  TO) the average over the h = ( N  - k)/10 first pairs of nearest neighbours 
(renumbered from 1 to h )  having distances dF,F'PJ) > ro after k(P,, P') iterations: 

The Lyapunov exponents as computed using ( l ) ,  (2) ,  (4), ( 5 )  were compared in Lega 
et al. (2000) for the 2-dimensional Hhon ' s  map and for the standard mapping described 
by the equations 

x,+1 = 2, + E sin(z, + yz) mod (27r) 

Yz+l = 2' +YE mod (27r). 

Several dynamical behaviour of the standard map were investigated (circulation torus, 
libration island, weak chaos, chaos, strong chaos). In all cases (both dissipative and 
conservative), the mixed (Equation 5) provides the best result when compared to the 
other methods. With the speed of computation, it is wise to use all algorithms to cross- 
check the results. 

8 Discussion 

In Celletti et al. (1999) we presented a new algorithm to test for low-dimensional deter- 
minism of a short time series and to provide a good estimate of the maximum Lyapunov 
exponent (LCE) based on the measure suggested in Boffetta et al. (1998), Cellucci et al. 
(1997), Gao and Zheng (1993), Kantz (1994). The method depends only on two free pa- 
rameters: the iteration parameter and the initial distance. In Section 5 ,  we have provided 
simple arguments for the choice of these parameters and performed a X2-test on some 
mathematical models to validate these criteria. We have applied the method of Celletti 
et al. to many discrete systems, showing that it is able to discriminate correctly the deter- 
ministic behaviour of the time series. Also in the case of continuous systems, our method 
correctly detects the deterministic dynamics. Our method of discretising these systems 
was aimed a t  providing time series with comparable resolution to experiment. Then, we 
have arbitrarily scaled the values in order to obtain point processes with characteristics 
similar to those observed in spike trains, namely an average rate of 0.1-5.0 spikes/s a t  a 
resolution of lms; the LCE curves showed a stable behaviour over this range. Surrogate 
data were also considered and in all cases a stochastic behaviour was found. 

As a concrete application of the method presented in Section 5 ,  we considered ex- 
perimental time series derived from neuro-biological studies. In this case, time series are 
usually short and are characterised by noise variances of 10% or more of the signal vari- 
ance (Rapp 1993, Theiler and Rapp 1996). The test for determinism of such series, in 
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particular for the analysis of time series derived from brain activity such as extracellular 
single unit spike trains, has often been put in doubt because of the limited possibility 
to discriminate low levels of noise offered by established methods of analysis. To this 
respect, a method based on the measure of Gao and Zheng (Gao and Zheng, 1993) has 
been recently developed (Cellucci e t  al., 1997) to detect noise in time series derived from 
Rossler, Lorenz and Mackey-Glass attractors with more than 8000 points. The prob- 
lem of estimating the effect of noise corruption in time series data is difficult (Schreiber 
and Kantz, 1996) and depends on the nature of noise, either observational or dynamical 
(Theiler e t  al., 1992). To this end, we considered the effect of additive, dynamical and 
experimental noise and compared our algorithm to the method developed by Grassberger 
and Procaccia (Grassberger and Procaccia, 1983). Without applying any noise filter- 
ing technique the noisy time series was identified as deterministic by the G P  method, 
but not by our method. This result indicates a high level of sensitivity to noise by our 
technique. However, the G P  method has the advantage of providing information on the 
dimensions of the embedding and of the attractor, if any, and was successfully used in 
studies of neuro-biological data (Babloyantz and Salazar 1985, Celletti and Villa 1996, 
Mpitsos e t  al. 1988, Rapp e t  al. 1985). Therefore, we would suggest the application of the 
G P  method at first in order to discriminate the candidate time series for deterministic 
dynamics. On these selected series, the complementary use of our method would provide 
a more precise evaluation of which data may follow a strict deterministic behaviour. 

The finding of strict deterministic dynamics in several spike trains investigated in this 
study confirms the previous results obtained by applying the G P  method (Babloyantz and 
Salazar 1985, Celletti and Villa 1996, Mpitsos e t  al. 1988, Rapp e t  al. 1985). These results 
establish the existence in the brain of some mechanisms able to support stable nonlinear 
dynamics of neuronal firing over a time that must be suitable to process some meaningful 
information in the brain. Theoretical prediction of the existence of such attractor networks 
was suggested in relation to representation of learned stimuli and was simulated in large 
scale neural networks with simple but reasonable assumptions of interactions between 
neurons (e.g., Amit and Brunel 1997, Herrmann e t  al. 1993). We may raise the hypothesis 
that a number of neuronal networks, each one being potentially described by a limited 
set of differential equations (given the low-dimensionality in the experimental findings) , 
may interact at the level of selected single-units. Therefore, the analysis of deterministic 
dynamics in the brain might provide a new measure of the level of interacting networks at  
different conditions, encompassing also clinical and pharmacological manipulations. The 
method adopted in this work is simple enough to be implemented in an efficient computer 
program and could be used as a complementary method to the routinely accepted time 
domain analyses of spike trains. 
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